B.Sc. (Honours) Examination, 2019 Semester-III (CBCS)

Statistics

Course: CC-7 (Mathematical Analysis)

Time: 3 Hours Full Marks: 60

Questions are of value as indicated in the margin

 $Group - A \ (Answer \ any \ ten \ questions)$ $10 \times 1 = 10$

- 1. Answer the following questions with proper justification.
 - (a) State 'well ordering principle' and 'density property' of a set.
 - (b) How do you represent $\sqrt{7}$ on directed line?
 - (c) Write down the definition of a Borel set and give an example.
 - (d) Discuss the statement: $\{|x_n|\}$ is a convergent sequence that converges to |l| then $\{x_n\}$ is a convergent sequence that converges to l.
 - (e) A convergent sequence is a Cauchy sequence. Does the converse of this statement is true?
 - (f) Discuss the statement: If $\sum u_n$ be a convergent series of positive real numbers then the series $\sum \sin^2 u_n$ is also convergent.
 - (g) The series $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is convergent?
 - (h) Find $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$.
 - (i) What do you mean by removable discontinuity? Give an example and discuss.
 - (j) Let $f: \mathbf{R} \to \mathbf{R}$ be a differentiable and f' is continuous. Then find $\lim_{n \to \infty} (n+1) \int_0^1 x^n f(x) dx$.
 - (k) Let f(x) = (x-1)(x-2)(x-3)(x-4)(x-5), $x \in \mathbf{R}$. Then find the exact number of distinct real roots of the equation f'(x) = 0.
 - (l) Which kind of interpolation formula we use for interpolating near the end of the tabular values with unequal space?
 - (m) What is the relation between ∇ and E operator?
 - (n) Write down the Stirlings approximation of n!.

 $Group - B (Answer any five questions) 5 \times 6 = 30$

- 2. (a) Show that $\sqrt[3]{6}$ is not a rational number.
 - (b) Show that the finite union and intersection of two neighbourhood of α is also a neighbourhood of α . Does these results hold for infinite case? 3+3

P.T.O.

- 3. (a) If $\{x_n\}$ converges to l then show that $\{e^{x_n}\}$ converges to e^l .

(b) Show that
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0$$
.
(c) Find $\lim_{n\to\infty} \left[\left(\frac{2}{1}\right) \left(\frac{3}{2}\right)^2 \cdots \left(\frac{n+1}{n}\right)^n \right]^{1/n}$. $2+2+2$

- 4. (a) For the bounded sequences $\{x_n\}$, $\{y_n\}$, show that $\overline{\lim} (x_n + y_n) \leq \overline{\lim} x_n + \overline{\lim} y_n$.
 - (b) Show that the sequence $\{x_n\}$ where $x_n = 1 \frac{1}{2} + \frac{1}{3} \dots + (-1)^{n-1} + \frac{1}{n}$ is a Cauchy sequence. Hence discuss its convergence. 3 + 3
- 5. (a) State and prove Pringsheim theorem. Does the converse of this theorem is true?
 - (b) Test the convergence of the series $\sum [1-\cos(\pi/n)]$.

4+2

- 6. (a) Let $\{a_n\}$ be a sequence of real numbers such that $\sum a_n$ converges absolutely. Prove that the series $\sum \ln(1+a_n^4)$ converges.
 - (b) Discuss the convergence of: $a+b+a^2+b^2+a^3+b^3+\cdots$, where 0 < a < b < 1. 3 + 3
- 7. (a) Show that $\lim_{x\to +\infty} \frac{[x]}{x} = 1$. (b) Cite some examples where: i) Sum of two discontinuous function is continuous, ii) Product of two discontinuous function is continuous.
 - (c) For $x \in \mathbb{R}$, define $f(x) = \cos(\pi x) + [x^2]$ and $g(x) = \sin(\pi x)$. Which of the following statements is (are) true? (i) f(x) is continuous at x=2. (ii) g(x) is continuous at x=2. (iii) f(x)+g(x) is continuous at x = 2. (iv) f(x)g(x) is continuous at x = 2. 2+2+2
- 8. (a) Let $f:[0,13]\to \mathbb{R}$ be defined by $f(x)=x^{13}-e^{-x}+5x+6$. Then find the minimum value of the function f on [0, 10].
 - (b) If f, g, h are continuous on [a, b] and differentiable on (a, b), then show that $\exists c \in (a, b)$ such

that
$$\begin{vmatrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f'(c) & g'(c) & h'(c) \end{vmatrix} = 0.$$

(c) Let $f: \mathbf{R} \to \mathbf{R}$ be differentiable function with $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f'(x) = 2$. Then find the

value of
$$\lim_{x \to \infty} \left(1 + \frac{f(x)}{x^2}\right)^x$$
. $2+2+2$

- 9. (a) Solve the difference equation: $\nabla^4 x(n) = 0$.
 - (b) Derive the expression of error in Simpson's $1/3^{rd}$ Rule.

3 + 3

$$Group - C$$
 (Answer any two questions) $2 \times 10 = 20$

- 10. (a) Apply Mean Value Theorem prove that if $\phi(x) = F(f(x))$, then $\phi'(x) =$ f'(x)F'(f(x)). Here the derivatives are continuous.

 - (b) Find $\lim_{x \to 0^+} \left(\frac{\sin x}{x} \right)^{\frac{1}{x}}$. (c) Show that $x \frac{x^3}{3!} < \sin(x) < x \frac{x^3}{3!} + \frac{x^5}{5!}$, for x > 0. 4 + 3 + 3

11. (a) State and prove Gauss's Forward Interpolation Formula.

(b) Using Lagrange's formula express $g(x) = \frac{x^2 + x - 3}{x^3 - 2x^2 - x + 2}$ as a sum of partial fractions.

(c) Find the missing value in the following table:

\overline{x}	:	0,	5	10	15	20	25	30
f(x)	:	1	3	_	73	225	_	1153

12. (a) Let $a_1 = 2$, $b_1 = 1$ and for $n \ge 1$, $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = \frac{2a_n b_n}{a_n + b_n}$. Then show that

i) $b_n \leq a_n$, $\forall n$, ii) $b_{n+1} \geq b_n$, $\forall n$, iii) $\{a_n\}$, $\{b_n\}$ converges to the same limit $\sqrt{2}$. (b) Discuss the convergence of the series: $1 + \frac{\alpha^2}{1.\beta} + \frac{\alpha^2(\alpha+1)^2}{1.2.\beta(\beta+1)} + \frac{\alpha^2(\alpha+1)^2(\alpha+2)^2}{1.2.3.\beta(\beta+1)(\beta+2)} + \cdots$. (c) Discuss the convergence of the series: $\sum \frac{(-1)^{n-1}}{n\sqrt{n}}$ 4+4+2